References and Notes
See, e.g.:
<A NAME="RW20109ST-1A">1a</A>
Gooding OW.
Beard CC.
Jackson DY.
Wren DL.
Cooper GF.
J. Org. Chem.
1991,
56:
1083
<A NAME="RW20109ST-1B">1b</A>
D’Aniello F.
Mann A.
Taddei M.
J.
Org. Chem.
1996,
61:
4870
<A NAME="RW20109ST-1C">1c</A>
Sherry BD.
Toste FD.
J.
Am. Chem. Soc.
2004,
126:
15978
<A NAME="RW20109ST-1D">1d</A>
Colas Y.
Cazes B.
Gore J.
Tetrahedron
Lett.
1984,
25:
845
<A NAME="RW20109ST-1E">1e</A>
Fürstner A.
Méndez M.
Angew.
Chem. Int. Ed.
2003,
42:
5355
For chiral-catalyst-induced asymmetric synthesis, see e.g.:
<A NAME="RW20109ST-1F">1f</A>
Li C.
Wang X.
Sun X.
Tang Y.
Zheng J.
Xu Z.
Zhou Y.
Dai L.
J.
Am. Chem. Soc.
2007,
129:
1494
<A NAME="RW20109ST-1G">1g</A>
Imada Y.
Nishida M.
Kutsuwa K.
Murahashi S.
Naota T.
Org. Lett.
2005,
7:
5837
<A NAME="RW20109ST-2">2</A>
Hoffmann-Röder A.
Krause N.
Angew. Chem. Int. Ed.
2004,
43:
1096
<A NAME="RW20109ST-3A">3a</A>
Blomquist AT.
Burge RE.
Sucsy AC.
J.
Am. Chem. Soc.
1952,
74:
3636
<A NAME="RW20109ST-3B">3b</A>
Semmelhack MF.
Brickner SJ.
J.
Am. Chem. Soc.
1981,
103:
3945
<A NAME="RW20109ST-3C">3c</A>
Hässig R.
Seebach D.
Siegel H.
Chem. Ber.
1984,
117:
1877
<A NAME="RW20109ST-3D">3d</A>
Barlunenga J.
Fernández JR.
Yus M.
J. Chem. Soc., Chem. Commun.
1985,
203
<A NAME="RW20109ST-3E">3e</A>
Gabbutt
CD.
Hepworth JD.
Heron BM.
Rahman MM.
J. Chem.
Soc., Perkin Trans. 1
1994,
1733
<A NAME="RW20109ST-3F">3f</A>
Bhuvaneswari N.
Venkatachalam CS.
Balasubramanian KK.
J. Chem. Soc., Chem. Commun.
1994,
1177
<A NAME="RW20109ST-3G">3g</A>
Nagaoka Y.
Tomioka K.
J. Org. Chem.
1998,
63:
6428
<A NAME="RW20109ST-3H">3h</A>
Lange T.
van Loon J.-D.
Tykwinski RR.
Schreiber M.
Dieterich F.
Synthesis
1996,
537
<A NAME="RW20109ST-3I">3i</A>
Ohno H.
Toda A.
Oishi S.
Tanaka T.
Takemoto Y.
Fuji N.
Ibuka T.
Tetrahedron Lett.
2000,
41:
5131
<A NAME="RW20109ST-3J">3j</A>
Tius MA.
Pal SK.
Tetrahedron Lett.
2001,
42:
2605
<A NAME="RW20109ST-3K">3k</A>
Fletcher MT.
McGrath MJ.
König WA.
Moore CJ.
Cribb BW.
Allsopp PG.
Kitching W.
Chem. Commun.
2001,
885
<A NAME="RW20109ST-3L">3l</A>
Oishi S.
Toda A.
Takemoto Y.
Fuji N.
Ibuka T.
J.
Org. Chem.
2002,
67:
1359
<A NAME="RW20109ST-3M">3m</A>
Ohno H.
Takeoka Y.
Kadoh Y.
Miyamura K.
Tanaka T.
J.
Org. Chem.
2004,
69:
4541
<A NAME="RW20109ST-3N">3n</A>
Yamazaki T.
Yamamoto T.
Ichihara R.
J.
Org. Chem.
2006,
71:
6251
For elimination of α-acetoxyl
alkenyl tributyltin, see:
<A NAME="RW20109ST-4A">4a</A>
Konoik T.
Araki Y.
Tetrahedron Lett.
1988,
29:
1355 ; cf. also ref. 3k
For elimination of α-acetoxyl alkenyl sulfoxides,
see:
<A NAME="RW20109ST-4B">4b</A>
Satoh T.
Itoh N.
Watanabe S.
Koike H.
Matsuno H.
Matsuda K.
Yamakawa K.
Tetrahedron
1995,
51:
9327
<A NAME="RW20109ST-4C">4c</A>
Satoh T.
Kuramochi Y.
Inoue Y.
Tetrahedron
Lett.
1999,
40:
8815
<A NAME="RW20109ST-4D">4d</A>
Satoh T.
Hanaki N.
Kuramochi Y.
Inoue Y.
Hosoya K.
Sakai K.
Tetrahedron
2002,
58:
2533
<A NAME="RW20109ST-5">5</A>
For clarity, synthesis of 6a-c is
given in the Supporting Information.
<A NAME="RW20109ST-6">6</A>
Zhu L.
Wehmeyer RM.
Rieke RD.
J.
Org. Chem.
1991,
56:
1445
<A NAME="RW20109ST-7A">7a</A>
Rieke RD.
Science
1989,
246:
1260
<A NAME="RW20109ST-7B">7b</A>
Rieke RD.
Hanson MV.
Tetrahedron
1997,
53:
1925
<A NAME="RW20109ST-7C">7c</A>
Lee J.
Velarde-Ortiz R.
Guijarro AR.
Wurst J.
Rieke RD.
J. Org. Chem.
2000,
65:
5428
<A NAME="RW20109ST-8">8</A>
Hässig R.
Seebach D.
Siegel H.
Chem.
Ber.
1984,
117:
1877
<A NAME="RW20109ST-9">9</A>
Although i-PrMgBr-mediated
elimination of sulfoxides are known (cf. ref. 4b,c), it has never
been utilized (to our knowledge) for elimination of α-acetoxyalkenyl
halides.
<A NAME="RW20109ST-10A">10a</A>
Krasovskiy A.
Knochel P.
Angew.
Chem. Int. Ed.
2004,
43:
3333
<A NAME="RW20109ST-10B">10b</A>
Krasovskiy A.
Straub B.
Knochel P.
Angew.
Chem. Int. Ed.
2006,
45:
159
<A NAME="RW20109ST-10C">10c</A>
Ren H.
Krasovskiy A.
Knochel P.
Org.
Lett.
2004,
6:
4215
<A NAME="RW20109ST-10D">10d</A>
Ren H.
Krasovskiy A.
Knochel P.
Chem.
Commun.
2005,
4:
543
<A NAME="RW20109ST-10E">10e</A>
Kopp F.
Krasovskiy A.
Knochel P.
Chem.
Commun.
2004,
20:
2288
<A NAME="RW20109ST-10F">10f</A>
Kopp F.
Knochel P.
Org. Lett.
2007,
9:
1639
<A NAME="RW20109ST-10G">10g</A>
Kopp F.
Wunderlich S.
Knochel P.
Chem.
Commun.
2007,
20:
2075
<A NAME="RW20109ST-10H">10h</A>
Knochel P.
Cahiez G.
Boymond L.
Rottlander M.
Angew. Chem. Int. Ed.
1998,
37:
1701
<A NAME="RW20109ST-11">11</A>
Lower level of functional-group tolerance
is also a major concern here, although the simultaneous cleavage
of the terminal Ac protecting group is beneficial in this synthesis.
<A NAME="RW20109ST-12A">12a</A>
Babudri F.
Fiandanese V.
Hassan O.
Punzi A.
Naso F.
Tetrahedron
1998,
54:
4327
<A NAME="RW20109ST-12B">12b</A>
The substrate utilized
in this work was conveniently derived by a Novezyme 435 resolution
of the racemic propargylic alcohol. For details, see the Supporting
Information.
<A NAME="RW20109ST-13">13</A>
Ma S.
Lu X.
J. Chem. Soc., Chem. Commun.
1990,
1643
<A NAME="RW20109ST-14A">14a</A>
Denis RC.
Gravel D.
Tetrahedron
Lett.
1994,
35:
4531
<A NAME="RW20109ST-14B">14b</A>
Denmark SE.
Jones TK.
J.
Org. Chem.
1982,
47:
4595
<A NAME="RW20109ST-15">15</A>
All attempts to separate the enantiomers
of 14 by chiral HPLC failed.
<A NAME="RW20109ST-16">16</A>
Unlike sulfoxides, there is no stereogenic
center in iodide. No loss of stereogenic centers occurred with the
elimination of the halides.
<A NAME="RW20109ST-17">17</A>
Representative
Procedures
Conversion of 6a into
7
A solution of 6a (150 mg,
0.30 mmol) in dry THF (2 mL) was added dropwise via a syringe to
a solution of i-PrMgBr (2 M, in Et2O,
0.9 mL, 1.8 mmol) in dry THF (5 mL) stirred at -78 ˚C
under argon. After completion of the addition, the stirring was
continued at -60 ˚C for 2.5 h. Aqueous sat. NH4Cl
was added. The mixture was extracted with Et2O (50 mL),
washed with H2O and brine before being dried over anhyd
Na2SO4. Removal of the solvent by rotary evaporation and
column chromatography (PE-EtOAc, 100:1) on silica gel gave
allene 7 as a colorless oil (84 mg, 0.28
mmol, 93%) along with recovered 6a (6
mg, 0.012 mmol, 4%).
Data
for 7
[α]D
²7 -33.7 (c 0.9, CHCl3). ¹H
NMR (300 MHz, CDCl3):
δ = 5.28-5.20
(m, 2 H), 4.54 (dd, J = 5.8,
2.8 Hz, 2 H), 3.62 (t, J = 6.4
Hz, 2 H), 2.07 (s, 3 H), 2.10-2.02 (m, 2 H), 1.54 (quint, J = 7.3 Hz,
2 H), 1.48 (quint, J = 7.1
Hz, 2 H), 0.90 (s, 9 H), 0.05 (s, 6 H). ¹³C
NMR (75 MHz, CDCl3): δ = 205.4, 170.8,
92.8, 86.9, 62.90, 62.87, 32.1, 28.1, 25.9, 25.3, 21.0, 18.3, -5.3.
FT-IR (film): 2955, 2930, 2858, 1963, 1744, 1227, 1103 cm-¹.
ESI-MS: m/z = 321.1 [M + Na]+. HRMS
(MALDI): m/z calcd for C16H30SiO3Na [M + Na]+: 321.1856;
found: 321.1863.